Something of The Book

PDF EPUB Library of e-Books

Methods of Applied Fourier Analysis

Methods of Applied Fourier Analysis

Author: Jayakumar Ramanathan

Publisher: Springer Science & Business Media

ISBN: 0817639632

Category: Mathematics

Page: 354

View: 202

Download BOOK »
Thus, basic material on Fourier series, Hardy spaces, and Fourier transform are interweaved with material that discusses discrete Fourier transform and fast algorithms, spectral theory of stationary processes, control theory, and wavelets.

Fourier Analysis

Fourier Analysis

Author: Javier Duoandikoetxea Zuazo

Publisher: American Mathematical Soc.

ISBN: 0821883844

Category: Mathematics

Page: 248

View: 134

Download BOOK »
Fourier analysis encompasses a variety of perspectives and techniques. This volume presents the real variable methods of Fourier analysis introduced by Calderón and Zygmund. The text was born from a graduate course taught at the Universidad Autonoma de Madrid and incorporates lecture notes from a course taught by José Luis Rubio de Francia at the same university. Motivated by the study of Fourier series and integrals, classical topics are introduced, such as the Hardy-Littlewood maximal function and the Hilbert transform. The remaining portions of the text are devoted to the study of singular integral operators and multipliers. Both classical aspects of the theory and more recent developments, such as weighted inequalities, H1, BMO spaces, and the T1 theorem, are discussed. Chapter 1 presents a review of Fourier series and integrals; Chapters 2 and 3 introduce two operators that are basic to the field: the Hardy-Littlewood maximal function and the Hilbert transform in higher dimensions. Chapters 4 and 5 discuss singular integrals, including modern generalizations. Chapter 6 studies the relationship between H1, BMO, and singular integrals; Chapter 7 presents the elementary theory of weighted norm inequalities. Chapter 8 discusses Littlewood-Paley theory, which had developments that resulted in a number of applications. The final chapter concludes with an important result, the T1 theorem, which has been of crucial importance in the field. This volume has been updated and translated from the original Spanish edition (1995). Minor changes have been made to the core of the book; however, the sections, "Notes and Further Results" have been considerably expanded and incorporate new topics, results, and references. It is geared toward graduate students seeking a concise introduction to the main aspects of the classical theory of singular operators and multipliers. Prerequisites include basic knowledge in Lebesgue integrals and functional analysis.

Fourier Analysis

Fourier Analysis

Author: Elias M. Stein

Publisher: Princeton University Press

ISBN: 9781400831234

Category: Mathematics

Page: 328

View: 495

Download BOOK »
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Numerical Fourier Analysis

Numerical Fourier Analysis

Author: Gerlind Plonka

Publisher: Springer

ISBN: 9783030043063

Category: Mathematics

Page: 618

View: 230

Download BOOK »
This book offers a unified presentation of Fourier theory and corresponding algorithms emerging from new developments in function approximation using Fourier methods. It starts with a detailed discussion of classical Fourier theory to enable readers to grasp the construction and analysis of advanced fast Fourier algorithms introduced in the second part, such as nonequispaced and sparse FFTs in higher dimensions. Lastly, it contains a selection of numerical applications, including recent research results on nonlinear function approximation by exponential sums. The code of most of the presented algorithms is available in the authors’ public domain software packages. Students and researchers alike benefit from this unified presentation of Fourier theory and corresponding algorithms.

Fourier Analysis

Fourier Analysis

Author: Eric Stade

Publisher: John Wiley & Sons

ISBN: 9781118165515

Category: Mathematics

Page: 520

View: 605

Download BOOK »
A reader-friendly, systematic introduction to Fourieranalysis Rich in both theory and application, Fourier Analysispresents a unique and thorough approach to a key topic in advancedcalculus. This pioneering resource tells the full story of Fourieranalysis, including its history and its impact on the developmentof modern mathematical analysis, and also discusses essentialconcepts and today's applications. Written at a rigorous level, yet in an engaging style that doesnot dilute the material, Fourier Analysis brings twoprofound aspects of the discipline to the forefront: the wealth ofapplications of Fourier analysis in the natural sciences and theenormous impact Fourier analysis has had on the development ofmathematics as a whole. Systematic and comprehensive, the book: Presents material using a cause-and-effect approach,illustrating where ideas originated and what necessitated them Includes material on wavelets, Lebesgue integration, L2 spaces,and related concepts Conveys information in a lucid, readable style, inspiringfurther reading and research on the subject Provides exercises at the end of each section, as well asillustrations and worked examples throughout the text Based upon the principle that theory and practice arefundamentally linked, Fourier Analysis is the ideal text andreference for students in mathematics, engineering, and physics, aswell as scientists and technicians in a broad range of disciplineswho use Fourier analysis in real-world situations.

Fourier Analysis

Fourier Analysis

Author: William O. Bray

Publisher: CRC Press

ISBN: 9781000117134

Category: Mathematics

Page: 468

View: 660

Download BOOK »
Providing complete expository and research papers on the geometric and analytic aspects of Fourier analysis, this work discusses new approaches to classical problems in the theory of trigonometric series, singular integrals/pseudo-differential operators, Fourier analysis on various groups, numerical aspects of Fourier analysis and their applications, wavelets and more.

Applied Fourier Analysis

Applied Fourier Analysis

Author: Tim Olson

Publisher: Birkhäuser

ISBN: 9781493973934

Category: Mathematics

Page: 302

View: 744

Download BOOK »
The first of its kind, this focused textbook serves as a self-contained resource for teaching from scratch the fundamental mathematics of Fourier analysis and illustrating some of its most current, interesting applications, including medical imaging and radar processing. Developed by the author from extensive classroom teaching experience, it provides a breadth of theory that allows students to appreciate the utility of the subject, but at as accessible a depth as possible. With myriad applications included, this book can be adapted to a one or two semester course in Fourier Analysis or serve as the basis for independent study. Applied Fourier Analysis assumes no prior knowledge of analysis from its readers, and begins by making the transition from linear algebra to functional analysis. It goes on to cover basic Fourier series and Fourier transforms before delving into applications in sampling and interpolation theory, digital communications, radar processing, medi cal imaging, and heat and wave equations. For all applications, ample practice exercises are given throughout, with collections of more in-depth problems built up into exploratory chapter projects. Illuminating videos are available on Springer.com and Link.Springer.com that present animated visualizations of several concepts. The content of the book itself is limited to what students will need to deal with in these fields, and avoids spending undue time studying proofs or building toward more abstract concepts. The book is perhaps best suited for courses aimed at upper division undergraduates and early graduates in mathematics, electrical engineering, mechanical engineering, computer science, physics, and other natural sciences, but in general it is a highly valuable resource for introducing a broad range of students to Fourier analysis.

Fourier Analysis and Stochastic Processes

Fourier Analysis and Stochastic Processes

Author: Pierre Brémaud

Publisher: Springer

ISBN: 9783319095905

Category: Mathematics

Page: 385

View: 983

Download BOOK »
This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). Each chapter has an exercise section, which makes Fourier Analysis and Stochastic Processes suitable for a graduate course in applied mathematics, as well as for self-study.

Principles of Fourier Analysis

Principles of Fourier Analysis

Author: Kenneth B. Howell

Publisher: CRC Press

ISBN: 9781498734080

Category: Mathematics

Page: 788

View: 335

Download BOOK »
Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas. Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author's development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based on the use of Gaussian test functions that yields an even more general -yet simpler -theory than usually presented. Principles of Fourier Analysis stimulates the appreciation and understanding of the fundamental concepts and serves both beginning students who have seen little or no Fourier analysis as well as the more advanced students who need a deeper understanding. Insightful, non-rigorous derivations motivate much of the material, and thought-provoking examples illustrate what can go wrong when formulas are misused. With clear, engaging exposition, readers develop the ability to intelligently handle the more sophisticated mathematics that Fourier analysis ultimately requires.

Fourier Analysis and Approximation of Functions

Fourier Analysis and Approximation of Functions

Author: Roald M. Trigub

Publisher: Springer Science & Business Media

ISBN: 1402023413

Category: Mathematics

Page: 610

View: 178

Download BOOK »
In Fourier Analysis and Approximation of Functions basics of classical Fourier Analysis are given as well as those of approximation by polynomials, splines and entire functions of exponential type. In Chapter 1 which has an introductory nature, theorems on convergence, in that or another sense, of integral operators are given. In Chapter 2 basic properties of simple and multiple Fourier series are discussed, while in Chapter 3 those of Fourier integrals are studied. The first three chapters as well as partially Chapter 4 and classical Wiener, Bochner, Bernstein, Khintchin, and Beurling theorems in Chapter 6 might be interesting and available to all familiar with fundamentals of integration theory and elements of Complex Analysis and Operator Theory. Applied mathematicians interested in harmonic analysis and/or numerical methods based on ideas of Approximation Theory are among them. In Chapters 6-11 very recent results are sometimes given in certain directions. Many of these results have never appeared as a book or certain consistent part of a book and can be found only in periodics; looking for them in numerous journals might be quite onerous, thus this book may work as a reference source. The methods used in the book are those of classical analysis, Fourier Analysis in finite-dimensional Euclidean space Diophantine Analysis, and random choice.

Fourier Analysis and Its Applications

Fourier Analysis and Its Applications

Author: G. B. Folland

Publisher: American Mathematical Soc.

ISBN: 9780821847909

Category: Fourier analysis

Page: 447

View: 684

Download BOOK »
This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.

Fourier Analysis: Volume 1, Theory

Fourier Analysis: Volume 1, Theory

Author: Adrian Constantin

Publisher: Cambridge University Press

ISBN: 9781316670804

Category: Mathematics

Page:

View: 141

Download BOOK »
Fourier analysis aims to decompose functions into a superposition of simple trigonometric functions, whose special features can be exploited to isolate specific components into manageable clusters before reassembling the pieces. This two-volume text presents a largely self-contained treatment, comprising not just the major theoretical aspects (Part I) but also exploring links to other areas of mathematics and applications to science and technology (Part II). Following the historical and conceptual genesis, this book (Part I) provides overviews of basic measure theory and functional analysis, with added insight into complex analysis and the theory of distributions. The material is intended for both beginning and advanced graduate students with a thorough knowledge of advanced calculus and linear algebra. Historical notes are provided and topics are illustrated at every stage by examples and exercises, with separate hints and solutions, thus making the exposition useful both as a course textbook and for individual study.