Something of The Book

PDF EPUB Library of e-Books

Teaching Electromagnetics

Teaching Electromagnetics

Author: Krishnasamy T. Selvan

Publisher: CRC Press

ISBN: 9781000400830

Category: Technology & Engineering

Page: 250

View: 549

Download BOOK »
Teaching Electromagnetics: Innovative Approaches and Pedagogical Strategies is a guide for educators addressing course content and pedagogical methods primarily at the undergraduate level in electromagnetic theory and its applications. Topics include teaching methods, lab experiences and hands-on learning, and course structures that help teachers respond effectively to trends in learning styles and evolving engineering curricula. The book grapples with issues related to the recent worldwide shift to remote teaching. Each chapter begins with a high-level consideration of the topic, reviews previous work and publications, and gives the reader a broad picture of the topic before delving into details. Chapters include specific guidance for those who want to implement the methods and assessment results and evaluation of the effectiveness of the methods. Respecting the limited time available to the average teacher to try new methods, the chapters focus on why an instructor should adopt the methods proposed in it. Topics include virtual laboratories, computer-assisted learning, and MATLAB® tools. The authors also review flipped classrooms and online teaching methods that support remote teaching and learning. The end result should be an impact on the reader represented by improvements to his or her practical teaching methods and curricular approach to electromagnetics education. The book is intended for electrical engineering professors, students, lab instructors, and practicing engineers with an interest in teaching and learning. In summary, this book: Surveys methods and tools for teaching the foundations of wireless communications and electromagnetic theory Presents practical experience and best practices for topical coverage, course sequencing, and content Covers virtual laboratories, computer-assisted learning, and MATLAB tools Reviews flipped classroom and online teaching methods that support remote teaching and learning Helps instructors in RF systems, field theory, and wireless communications bring their teaching practice up to date Dr. Krishnasamy T. Selvan is Professor in the Department of Electronics & Communication Engineering, SSN College of Engineering, since June 2012. Dr. Karl F. Warnick is Professor in the Department of Electrical and Computer Engineering at BYU.

Electromagnetic Fields

Electromagnetic Fields

Author: Ahmad Shahid Khan

Publisher: CRC Press

ISBN: 9781000168556

Category: Technology & Engineering

Page: 582

View: 350

Download BOOK »
The study of electromagnetic field theory is required for proper understanding of every device wherein electricity is used for operation. The proposed textbook on electromagnetic fields covers all the generic and unconventional topics including electrostatic boundary value problems involving two- and three-dimensional Laplacian fields and one- and two- dimensional Poissonion fields, magnetostatic boundary value problems, eddy currents, and electromagnetic compatibility. The subject matter is supported by practical applications, illustrations to supplement the theory, solved numerical problems, solutions manual and Powerpoint slides including appendices and mathematical relations. Aimed at undergraduate, senior undergraduate students of electrical and electronics engineering, it: Presents fundamental concepts of electromagnetic fields in a simplified manner Covers one two- and three-dimensional electrostatic boundary value problems involving Laplacian fields and Poissonion fields Includes exclusive chapters on eddy currents and electromagnetic compatibility Discusses important aspects of magneto static boundary value problems Explores all the basic vector algebra and vector calculus along with couple of two- and three-dimensional problems

Principles of Electromagnetic Waves and Materials

Principles of Electromagnetic Waves and Materials

Author: Dikshitulu K. Kalluri

Publisher: CRC Press

ISBN: 9781466593725

Category: Technology & Engineering

Page: 465

View: 919

Download BOOK »
Principles of Electromagnetic Waves and Materials is a condensed version of the author’s previously published textbook, Electromagnetic Waves, Materials, and Computation with MATLAB®. This book focuses on lower-level courses, primarily senior undergraduate and graduate students in electromagnetic waves and materials courses. It takes an integrative approach to the subject of electromagnetics by supplementing quintessential "old-school" information and methods with the appropriate amount of material on plasmas for exposing the students to the broad area of Plasmonics and by striking a balance between theoretical and practical aspects. Ancillary materials are available upon qualifying course adoption.

Introduction to Electromagnetic Waves with Maxwell's Equations

Introduction to Electromagnetic Waves with Maxwell's Equations

Author: Ozgur Ergul

Publisher: John Wiley & Sons

ISBN: 9781119626749

Category: Science

Page: 592

View: 785

Download BOOK »
Discover an innovative and fresh approach to teaching classical electromagnetics at a foundational level Introduction to Electromagnetic Waves with Maxwell’s Equations delivers an accessible and practical approach to teaching the wellknown topics all electromagnetics instructors must include in their syllabus. Based on the author’s decades of experience teaching the subject, the book is carefully tuned to be relevant to an audience of engineering students who have already been exposed to the basic curricula of linear algebra and multivariate calculus. Forming the backbone of the book, Maxwell’s equations are developed step-by-step in consecutive chapters, while related electromagnetic phenomena are discussed simultaneously. The author presents accompanying mathematical tools alongside the material provided in the book to assist students with retention and comprehension. The book contains over 100 solved problems and examples with stepwise solutions offered alongside them. An accompanying website provides readers with additional problems and solutions. Readers will also benefit from the inclusion of: A thorough introduction to preliminary concepts in the field, including scalar and vector fields, cartesian coordinate systems, basic vector operations, orthogonal coordinate systems, and electrostatics, magnetostatics, and electromagnetics An exploration of Gauss’ Law, including integral forms, differential forms, and boundary conditions A discussion of Ampere’s Law, including integral and differential forms and Stoke’s Theorem An examination of Faraday’s Law, including integral and differential forms and the Lorentz Force Law Perfect for third-and fourth-year undergraduate students in electrical engineering, mechanical engineering, applied maths, physics, and computer science, Introduction to Electromagnetic Waves with Maxwell’s Equations will also earn a place in the libraries of graduate and postgraduate students in any STEM program with applications in electromagnetics.

Teaching Electromagnetics

Teaching Electromagnetics

Author: Krishnasamy T. Selvan

Publisher: CRC Press

ISBN: 9781000400588

Category: Technology & Engineering

Page: 258

View: 453

Download BOOK »
Teaching Electromagnetics: Innovative Approaches and Pedagogical Strategies is a guide for educators addressing course content and pedagogical methods primarily at the undergraduate level in electromagnetic theory and its applications. Topics include teaching methods, lab experiences and hands-on learning, and course structures that help teachers respond effectively to trends in learning styles and evolving engineering curricula. The book grapples with issues related to the recent worldwide shift to remote teaching. Each chapter begins with a high-level consideration of the topic, reviews previous work and publications, and gives the reader a broad picture of the topic before delving into details. Chapters include specific guidance for those who want to implement the methods and assessment results and evaluation of the effectiveness of the methods. Respecting the limited time available to the average teacher to try new methods, the chapters focus on why an instructor should adopt the methods proposed in it. Topics include virtual laboratories, computer-assisted learning, and MATLAB® tools. The authors also review flipped classrooms and online teaching methods that support remote teaching and learning. The end result should be an impact on the reader represented by improvements to his or her practical teaching methods and curricular approach to electromagnetics education. The book is intended for electrical engineering professors, students, lab instructors, and practicing engineers with an interest in teaching and learning. In summary, this book: Surveys methods and tools for teaching the foundations of wireless communications and electromagnetic theory Presents practical experience and best practices for topical coverage, course sequencing, and content Covers virtual laboratories, computer-assisted learning, and MATLAB tools Reviews flipped classroom and online teaching methods that support remote teaching and learning Helps instructors in RF systems, field theory, and wireless communications bring their teaching practice up to date Dr. Krishnasamy T. Selvan is Professor in the Department of Electronics & Communication Engineering, SSN College of Engineering, since June 2012. Dr. Karl F. Warnick is Professor in the Department of Electrical and Computer Engineering at BYU.

Engineering Electromagnetics

Engineering Electromagnetics

Author: Umran S. Inan

Publisher: Prentice Hall

ISBN: UOM:39015048746013

Category: Electromagnetic Theory

Page: 836

View: 353

Download BOOK »
Engineering Electromagnetics provides a solid foundation in electromagnetics fundamentals by emphasizing physical understanding and practical applications. Electromagnetics, with its requirements for abstract thinking, can prove challenging for students. The authors' physical and intuitive approach has produced a book that will inspire enthusiasm and interest for the material. Benefiting from a review of electromagnetic curricula at several schools and repeated use in classroom settings, this text presents material in a rigorous yet readable manner. FEATURES/BENEFITS Starts with coverage of transmission lines before addressing fundamental laws, providing a smooth transition from circuits to electromagnetics. Emphasizes physical understanding and the experimental bases of fundamental laws. Offers detailed examples and numerous practical end-of-chapter problems, with each problem's topical content clearly identified. Provides historical notes, abbreviated biographies, and hundreds of footnotes to motivate interest and enhance understanding. Back Cover Benefiting from a review of electromagnetics curricula at several schools and repeated use in classroom settings, this text presents material in a comprehensive and practical yet readable manner. Features: Starts with coverage of transmission lines before addressing fundamental laws, providing a smooth transition from circuits to electromagnetics. Emphasizes physical understanding and the experimental bases of fundamental laws. Offers detailed examples and numerous practical end-of-chapter problems, with each problem's topical content clearly identified. Provides historical notes, abbreviated biographies, and hundreds of footnotes to motivate interest and enhance understanding.

Fundamentals of Electromagnetics 2

Fundamentals of Electromagnetics 2

Author: David Voltmer

Publisher: Morgan & Claypool Publishers

ISBN: 9781598291735

Category: Technology & Engineering

Page: 196

View: 349

Download BOOK »
This book is the second of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 2: Quasistatics and Waves examines how the low-frequency models of lumped elements are modified to include parasitic elements. For even higher frequencies, wave behavior in space and on transmission lines is explained. Finally, the textbook concludes with details of transmission line properties and applications. Upon completion of this book and its companion Fundamentals of Electromagnetics Vol 1: Internal Behavior of Lumped Elements, with a focus on the DC and low-frequency behavior of electromagnetic fields within lumped elements, students will have gained the necessary knowledge to progress to advanced studies of electromagnetics.

Electromagnetic Frontier Theory Exploration

Electromagnetic Frontier Theory Exploration

Author: Changhong Liang

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 9783110525410

Category: Science

Page: 387

View: 434

Download BOOK »
This book systematically introduces electromagnetic theories and their applications in practice: electrostatic energy, Poynting theorem, the polarization of waves, the conservation law, the electromagnetic symmetry, the conformal mapping method, the electromagnetic loss. The parameters and theorems of electromagnetic theories are discussed in detail, making the book an essential reference for researchers, and engineers in electromagnetics field.

Insights from Research in Science Teaching and Learning

Insights from Research in Science Teaching and Learning

Author: Nicos Papadouris

Publisher: Springer

ISBN: 9783319200743

Category: Science

Page: 313

View: 612

Download BOOK »
This book includes studies that represent the state of the art in science education research and convey a sense of the variation in educational traditions around the world. The papers are organized into six main sections: science teaching processes, conceptual understanding, reasoning strategies, early years science education, and affective and social aspects of science teaching and learning. The volume features 18 papers, selected from the most outstanding papers presented during the 10th European Science Education Research Association (ESERA) Conference, held in Nicosia, Cyprus, in September 2013. The theme of the conference was “Science Education Research for Evidence-based Teaching and Coherence in Learning”. The studies presented underline aspects of great relevance in contemporary science education: the need to reflect on different approaches to enhance our knowledge of learning processes and the role of context, designed or circumstantial, formal or non-formal, in learning and instruction. These studies are innovative in the issues they explore, the methods they use, or the ways in which emergent knowledge in the field is represented. The book is of interest to science educators and science education researchers with a commitment to evidence informed teaching and learning.

Electromagnetics and Transmission Lines

Electromagnetics and Transmission Lines

Author: Robert Alan Strangeway

Publisher: John Wiley & Sons

ISBN: 9781119881902

Category: Science

Page: 308

View: 286

Download BOOK »
Electromagnetics and Transmission Lines Textbook resource covering static electric and magnetic fields, dynamic electromagnetic fields, transmission lines, antennas, and signal integrity within a single course Electromagnetics and Transmission Lines provides coverage of what every electrical engineer (not just the electromagnetic specialist) should know about electromagnetic fields and transmission lines. This work examines several fundamental electrical engineering concepts and components from an electromagnetic fields viewpoint, such as electric circuit laws, resistance, capacitance, and self and mutual inductances. The approach to transmission lines (T-lines), Smith charts, and scattering parameters establishes the underlying concepts of vector network analyzer (VNA) measurements. System-level antenna parameters, basic wireless links, and signal integrity are examined in the final chapters. As an efficient learning resource, electromagnetics and transmission lines content is strategically modulated in breadth and depth towards a single semester objective. Extraneous, distracting topics are excluded. The wording style is somewhat more conversational than most electromagnetics textbooks in order to enhance student engagement and inclusivity while conveying the rigor that is essential for engineering student development. To aid in information retention, the authors also provide supplementary material, including a homework solutions manual, lecture notes, and VNA experiments. Sample topics covered in Electromagnetics and Transmission Lines include: Vector algebra and coordinate systems, Coulomb’s law, Biot-Savart law, Gauss’s law, and solenoidal magnetic flux Electric potential, Ampere’s circuital law, Faraday’s law, displacement current, and the electromagnetic principles underlying resistance, capacitance, and self and mutual inductances The integral form of Maxwell’s equations from a conceptual viewpoint that relates the equations to physical understanding (the differential forms are also included in an appendix) DC transients and AC steady-state waves, reflections, and standing waves on T-lines Interrelationships of AC steady-state T-line theory, the Smith chart, and scattering parameters Antenna basics and line-of-sight link analysis using the Friis equation An introduction to signal integrity Electromagnetics and Transmission Lines is an authoritative textbook learning resource, suited perfectly for engineering programs at colleges and universities with a single required electromagnetic fields course. Student background assumptions are multivariable calculus, DC and AC electric circuits, physics of electromagnetics, and elementary differential equations.

Schaum's Outline of Electromagnetics, 4th Edition

Schaum's Outline of Electromagnetics, 4th Edition

Author: Joseph Edminister

Publisher: McGraw Hill Professional

ISBN: 9780071831482

Category: Education

Page: 352

View: 704

Download BOOK »
Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there's Schaum's. This all-in-one-package includes more than 350 fully solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 20 detailed videos featuring instructors who explain the most commonly tested problems--it's just like having your own virtual tutor! You'll find everything you need to build confidence, skills, and knowledge for the highest score possible. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you 351 fully solved problems Exercises to help you test your mastery of electromagnetics Support for all the major textbooks for electromagnetic courses Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time--and get your best test scores! Schaum's Outlines--Problem Solved.

Electromagnetic Geothermometry

Electromagnetic Geothermometry

Author: Viacheslav V. Spichak

Publisher: Elsevier

ISBN: 9780128024959

Category: Science

Page: 196

View: 726

Download BOOK »
Electromagnetic Geothermometry explores, presents and explains the new technique of temperature estimation within the Earth’s interior; the Electromagnetic technique will identify zones of geothermal anomalies and thus provides locations for deep drilling. This book includes many case studies from geothermal areas such as Travale (Italy), Soultz-sous-Forêts (France) and Hengill (Iceland), allowing the author and reader to draw conclusions regarding the dominating heat transfer mechanisms, location of its sources and to constrain the locations for drilling of the new boreholes. Covering a topic that so far has very little coverage (due to its newness) Electromagnetic Geothermometry presents ground breaking information on the interpretation of MT signals. And as such, is similar to the work that was done to develop new generations of seismic inversion methods that have since come to dominate the oil industry. Up until now geophysical methods have had difficulty resolving temperature differences which have been critical in the understanding of location and magnitude of geothermal resources Authored by the world’s foremost geothermometry experts who combined have more than 40 years of experience on the subject Presents case studies, allowing the author and reader to draw conclusions regarding the dominating heat transfer mechanisms, location of its sources and to constrain the locations for drilling of the new boreholes Provides important information on the constraints for drilling of new exploration boreholes Describes techniques that will dramatically decrease the costs associated with exploration drilling Includes information to help the reader improve the accuracy of the temperature estimations in the interwell space as well as far beneath boreholes